Charles Darwin University, Australia
Room 1409
FYI (CS Colloquium)
It is easy to see that, if each object is “simple,” the union of N objects cannot be larger than O(N^2) and a matching construction is easy. Are there classes of objects for which this quantity is near-linear in N? (Yes, there are: disks, axis-aligned squares, and more.) The quest for such classes, over the years, motivation for the problem, generalizations to higher dimensions, and other puzzles will constitute the content of this talk.
If I ever get to it, the latest and most amazing result in this area is joint work with Mark de Berg, Esther Ezra, and Micha Sharir. It is quite technical and I will not be able to say much about this during the talk, but if anyone is interested, I can provide lots of technical details on request. An overview of the subject will be mostly based on a survey of Agarwal, Pach, and Sharir.
Fixed-parameter algorithms, approximation algorithms and moderately exponential algorithms are three major approaches to algorithms design. While each of them being very active in its own, there is an increasing attention to the connection between these different frameworks. In particular, whether Independent Set would be better approximable once allowed with subexponential-time or FPT-time is a central question. Recently, several independent results appeared regarding this question, implying negative answer toward the conjecture. They state that, for every 0<r<1, there is no r-approximation which runs in better than certain subexponential-function time. We outline the results in these papers and overview the important concepts and techniques used to obtain such results.