IBS/KAIST Joint Discrete Math Seminar
Department of Mathematics Education, Konkuk University, Seoul
IBS/KAIST Joint Discrete Math Seminar
Motivated by the List Total Coloring Conjecture, Kostochka and Woodall (2001) proposed the List Square Coloring Conjecture which states that is chromatic-choosable for every graph . Recently, Kim and Park showed that the List Square Coloring Conjecture does not hold in general by finding a family of graphs whose squares are complete multipartite graphs with partite sets of unbounded size. It is a well-known fact that the List Total Coloring Conjecture is true if the List Square Coloring Conjecture holds for special class of bipartite graphs. On the other hand, the counterexamples to the List Square Coloring Conjecture are not bipartite graphs. Hence a natural question is whether is chromatic-choosable or not for every bipartite graph .
In this paper, we give a bipartite graph such that . Moreover, we show that the value can be arbitrarily large. This is joint work with Boram Park.
The square G2 of a graph G is the graph with the same vertex set as G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that for a planar graph G with maximum degree Δ(G)=3 we have χ(G2)≤7. Kostochka and Woodall conjectured that for every graph, the list-chromatic number of G2 equals the chromatic number of G2, that is χl(G2)=χ(G2) for all G. If true, this conjecture (together with Thomassen’s result) implies that every planar graph G with Δ(G)=3 satisfies χl(G2)≤7. We prove that every graph (not necessarily planar) with Δ(G)=3 other than the Petersen graph satisfies χl(G2)≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G)=3 and girth g(G)≥7, then χl(G2)≤7. Dvořák, Škrekovski, and Tancer showed that if G is a planar graph with Δ(G)=3 and girth g(G)≥10, then χl(G2)≤6. We improve the girth bound to show that: if G is a planar graph with Δ(G)=3 and g(G)≥9, then χl(G2)≤6. This is joint work with Daniel Cranston.</div>